WEAK PRODUCTS, HANKEL OPERATORS, AND INVARIANT SUBSPACES

STEFAN RICHTER

When studying Hardy and Bergman spaces of analytic functions on a region, it is natural to view them as part of the family of H^p- or L^p_a-spaces, and investigate how properties of the functions and operators on these spaces change as the parameter p changes. For reproducing kernel Hilbert spaces like the Dirichlet space of the unit disc or the Drury-Arveson space of the unit ball of \mathbb{C}^d it is unclear what a natural class of related spaces should be. The weak product $\mathcal{H} \odot \mathcal{H}$ and the space of Hankel symbols $X(\mathcal{H})$ can be associated with a large class of reproducing kernel Hilbert spaces. They may be considered to be the analogs of H^1 and $BMOA$ from the Hardy space theory. In fact, in some generality one shows that $(\mathcal{H} \odot \mathcal{H})^* = X(\mathcal{H})$, and that Hankel symbols define operators on \mathcal{H} whose null spaces are invariant for all multiplication operators.

In these talks I will present details of this set-up with a view of what they say about the Dirichlet- and Drury-Arveson spaces.